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The Raman spectra were recorded photographically on a grating 
instrument constructed in this laboratory. A Spectra-Physics 
Model 125 He-Ne laser was used for the excitation source, and the 
use of a Spectra-Physics Model 310 polarization rotator made the 
identification of the polarized lines a straightforward matter. By 
using a Corning filter, No. SPO-98565, in front of the slit, it was pos­
sible to obtain Raman spectra above 200 cm-1 from the exciting 
line, although the maximum transmission of the Corning filter is 
not reached until 400 cm-1. Several Rowland ghosts appear in the 
region between 200 and 400 cm""1 but they are weak and do not 
interfere. On the other hand, the region below 200 cm-1 is heavily 
populated with ghosts. A special Baird filter permitted one to 
obtain high transmission from about 40 to 200 cm-1 while removing 
all the ghosts. However, the constant presence of lines at 63 and 
91 cm-1 was observed. 

The use of diffusion models to treat the kinetics 
of fast reactions in solution was first proposed by 

Smoluchowski3 and has more recently been reviewed by 
Noyes.4 Although this approach is widely used and 
frequently provides satisfactory order-of-magnitude 
predictions of rate constants, several fundamental 
difficulties remain. These difficulties appear to stem 
primarily from a lack of detailed information regarding 
the microscopic mechanism for diffusion in liquids. 
In particular, the manner in which this mechanism 
might affect the relative motions of molecules in a liquid 
is not well understood. 

In Smoluchowski-type treatments of chemical reac­
tion kinetics, it is frequently assumed that the relative 
diffusion of molecules of two reactant species is de­
scribed by a coefficient that is just the sum of the bulk 
diffusion coefficients for the two species in solution. 
This assumption is equivalent to a supposition that no 
correlation exists between the time-dependent relative 
displacements of two solute molecules and their rela­
tive positions and motions at previous times. It is not 
altogether clear that this supposition is valid for mole­
cules that are separated by only short distances, and 

(1) This work was supported in part by a grant from the National 
Science Foundation, No. GP-7258. 

(2) Koninklijke/Shell Laboratorium, Amsterdam, Holland. 
(3) M. von Smoluchowski, Z. Phys. Chem., 92, 129 (19H). 
(4) R. M. Noyes in "Progress in Reaction Kinetics," Vol. 1, G. 

Porter, Ed., Pergamon Press, New York, N. Y., 1961, p 128. 

Acknowledgment. This w u k was supported by the 
Advanced Research Projects Agency through the 
Purdue IDL program. We are indebted to Dr. John 
Ferraro and Dr. Clarence Postmus of Argonne Na­
tional Laboratories for making the high-pressure facili­
ties available to us and helping with the measurements, 
to Dr. Stanley Abramowitz of the National Bureau of 
Standards for supplying a sample of 6LiOH, to Dr. V. 
Thornton of Phillips Petroleum Company for the 
polyethylene used for the far-infrared cells, and to 
Mr. Jim Saunders, Mr. Jack Fisher, and Mr. Arthur 
Curry for experimental help in this laboratory. 

indeed a deviating behavior—the so-called "solvent 
cage effect"—was long ago suggested by Rabinowitch.5 

The results obtained by Noyes and coworkers from their 
investigations of iodine atom recombination rates6,7 

and the wavelength dependence of the quantum yield 
for iodine photodissociation8-10 in solution also suggest 
that these short-range correlations may have a measur­
able effect upon the kinetics of certain very fast chemical 
processes. 

In order to obtain additional information regarding 
the microscopic structure and kinetics characteristic of 
simple liquids, one of the authors (P. L. F.) has recently 
completed a series of computer calculations simulating 
the dynamics of a two-dimensional dense fluid of Len-
nard-Jones disks. Two previous papers have presented 
the results from some preliminary analyses of the sim­
ulation data11 and a detailed investigation of the mecha­
nism for diffusion and relative diffusion in the model 
fluid.12 The purpose of this paper is to examine the 
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Abstract: Standard theoretical treatments of chemical reaction kinetics generally neglect any mean interaction 
potentials or "excluded volume" effects that might interfere with the relative diffusion of a pair of reactant mole­
cules in solution. Analyses of the computer-generated simulation data for a model dense fluid of Lennard-Jones 
disks have shown that the microscopic mechanism for diffusion in simple liquids is largely "cooperative" in nature, 
and that short-range correlations associated with this cooperative mechanism tend to slow the relative diffusion of 
pairs of molecules approaching to within three-four diameters of each other. In this paper we examine the impact 
of these results upon the theoretical prediction of diffusion-controlled reaction rates and the physical interpre­
tation of several other very fast chemical processes in solution. 
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Figure 1. "Snapshot" of an instantaneous configuration of the 
model fluid in a liquid-like state. The particles are plotted with a 
diameter a, the distance parameter in the Lennard-Jones pair po­
tential. 

impact of previous findings upon the treatment of diffu­
sion-controlled reaction kinetics in solution. Related 
topics, such as the solvent cage effect and the wave­
length dependence of quantum yields for photodissocia-
tion in solution will also be discussed briefly. 

Diffusion in Simple Liquids 

Examination of graphical displays of the simulation 
data has led to several intuitively important observations 
regarding the microscopic character of simple liquids. 
For example, "snapshots"13 of the instantaneous con­
figuration of the model system (see, e.g., Figure 1) 
provide evidence that the "excess" volume acquired by 
a liquid through thermal expansion is localized into 
relatively large, irregular "holes." Although a number 
of theories of the liquid state14 have postulated the 
existence of holes in the microstructure of real liquids, 
the phenomenon observed differs from that suggested 
by the theoretical models in two significant ways: (i) 
the holes appearing in the model fluid bear no relation­
ship to the size and shape of an individual fluid particle 
(that is, the holes do not appear as "vacancies" in an 
otherwise quasi-crystalline structure), and (ii) compari­
son of snapshots for successive times shows that a 
given hole may persist in the same region of the fluid for 
times of the order of 5 X ICh12 sec—well in excess of 
the characteristic kinetic relaxation time (ca. 2.5 X 
10~13 sec) for the system. A more detailed analysis 
of the microscopic structure of the model fluid, and 
the relationship between this structure and the structure 
of real simple liquids, is presented elsewhere.u 

(13) A detailed description of the graphical display techniques era-
ployed in analysis of the simulation data is provided in ref 11. 

(14) See, for example, H. Eyring and R. P. Marchi, J. Chem. Educ, 
40, 562 (1963), and the discussion in J. M. H. Levelt and E. G. D. Cohen 
in "Studies in Statistical Mechanics," Vol. 2, J. deBoer and G. E. 
Uhlenbeck, Ed., North-Holland Publishing Co., Amsterdam, Holland, 
1964, p 178 ff. 

(15) P. L. Fehder, J. Chem. Phys., 52, 791 (1970). 
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Figure 2. Trajectories of the particles in a liquid-like state of the 
model fluid. The small circles mark the initial positions of the 
particles, and the irregular lines extending therefrom the paths of 
the centers during the remainder of a 2 X 10~12 sec interval. The 
initial configuration also corresponds to that shown in Figure 1. 

Plots such as those shown in Figure 2 of the trajec­
tories of the particles in the model fluid provide some 
insight into the microscopic mechanism for diffusion 
in simple liquids. As can be seen in the figure, ex­
tensive diffusive migration is—over a surprisingly long 
time interval—largely restricted to local groups of 
particles in the region of a hole. Furthermore, motion 
pictures created from the simulation data show that the 
local groups of long trajectories arise from a concerted 
migration of the particles involved, rather than from 
successive "jumps" or knock-on collisions. Diffusion 
in the model fluid therefore proceeds by a mechanism 
that is largely cooperative in nature, and it is reasonable 
to assume that similar cooperative phenomena occur 
in real liquids. 

Although it is unlikely that cooperative phenomena 
of the sort observed in the model fluid would have a 
macroscopically discernible effect upon singlet16 diffu­
sion in real liquids, the short-range correlations associ­
ated with these phenomena become more important 
when the relative diffusion of molecules in solution 
is examined. It is convenient to describe relative 
diffusion in terms of the motion of one molecule in a 
coordinate system fixed to the center of the other; in 
two dimensions, the relative diffusion tensor DR then 
has the form 

DR 
/ A r O \ 

A O D J 
where Dn and Dee are the coefficients for radial and 
tangential diffusion, respectively, and the off-diagonal 
elements of the tensor vanish by symmetry. 

Consider a solution of two solute species, X and Y, in 
a solvent S. It is easily shown12 that, if the diffusive 
motions of the X and Y molecules are completely 

(16) We use the word "singlet" here to distinguish between the migra­
tion of individual molecules in solution and the relative diffusion of pairs 
of molecules. 
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Figure 3. Comparison of the mean potential \f,(r) calculated for 
the liquid-like state of the model fluid shown in Figures 1 and 2 
and the Lennard-Jones pair potential used in the simulation calcula­
tions. 

Figure 4. The empirically determined radial relative diffusion 
coefficient D„(r) for the liquid-like state of the model fluid shown 
in Figures 1 and 2. The dashed line represents the usual assump­
tion that £)„ = 2Z)3. 

uncorrelated, the coefficients describing the diffusion 
of X molecules relative to Y molecules (or vice versa) 
arejust equal to the sura of the bulk diffusion coefficients 
for X and Y in S. In statistical terms,17 this means 
that the average square of the time-dependent displace­
ments of an X molecule relative to a Y molecule (or 
vice versa) is just the sum of the time-dependent mean 
square displacements of the X and Y molecules taken 
separately. And by analogy, if no correlations exist 
between the motions of molecules in a one-component 
fluid, the coefficients Drr and Dm describing the relative 
diffusion of pairs of the molecules would both be equal 
to just twice the coefficient £>s for self-diffusion. 

Particles separated by large distances in the model 
fluid diffuse independently. But analysis of the simula­
tion data has also shown12 that short-range "coopera­
tive" correlations slow the relative motions of molecules 
approaching to within about 3-4 diameters of each 
other. A similar phenomenon had previously been 
suggested by Noyes;7 in terms of chemical reaction 
kinetics in solution, this result implies that the standard 
Smoluchowski-type treatments may overestimate the 
frequency of reactant-pair encounters—and thus, over­
estimate the rates of so-called "diffusion-controlled" 
reactions. Conversely, the computer results also indi­
cate that encounter pairs will remain in close proximity 
appreciably longer than predicted by an "independent" 
diffusion model. In the case of reactions having a non-
negligible activation energy or those requiring a specific 
steric configuration of the reactant molecules, the de­
pressed rate of reactant encounter may therefore be 
offset by an increased probability of reaction upon en­
counter. 

To a good approximation, relative diffusion in solu­
tion may be treated in terms of the mean potential 
\p(r) acting between two molecules when interactions 
with the surrounding solvent molecules are taken into 
account. A convenient form for the mean potential in 
a one-component liquid is obtained from the familiar 
radial distribution function g(r)18 

f(r) = kBT In g(r) 0) 

where kB is the Boltzmann constant and T the tempera­
ture. The radial distribution function for the model 
fluid has been discussed in detail elsewhere.15 In 
Figure 3, the mean potential obtained via eq 1 for a 
liquid-like state of the model fluid is shown in compari­
son with the Lennard-Jones pair potential. 

0LJOO = 4« w-m (2) 

(17) See, for example, R. Zwanzig, 4̂«««. Rev. Phys. Chem., 16, 67 
(1965). 

(18) P. A. Egelstaff, "An Introduction to the Liquid State," Academic 
Press, New York, N. Y., 1967, p 16. 

used in the simulation calculations. Unlike the simple 
pair potential, \p(r) exhibits a number of subsidiary 
maxima and minima corresponding to the first, second, 
. . ., etc., "shells" of neighbors surrounding a molecule 
in a liquid. Thus, in the mean potential model for 
relative diffusion, a molecule diffusing toward another 
molecule in solution must cross successively higher 
potential "barriers" before the two molecules come into 
direct contact. 

Numerical solutions of the two-dimensional diffusion 
equation including \f/(r) have shown12 however that the 
mean potential is not in itself sufficient to account for 
the relative diffusion phenomena observed in the model 
fluid; to obtain agreement with the simulation data 
it was also necessary to lower the value of D„ for pairs 
of particles separated by short distances. Although the 
precise physical meaning of this empirical variation in 
the relative diffusion coefficient is not entirely clear, 
we believe that it reflects the inability of a time-averaged 
function like \p(r) to account completely for the role 
played by transient geometric or "excluded volume" 
effects in the microscopic mechanism for diffusion at 
liquid-like densities. The two-dimensional diffusion 
equation including both \f/(r) and a relative "diffusion 
coefficient D„(r) of the form shown in Figure 4 was 
found to reproduce quite accurately the relative diffu­
sion phenomena observed in the model fluid. 

Reaction Kinetics in Solution 

In this section we obtain expressions describing the 
rates of so-called diffusion-controlled reactions in two-
and three-dimensional solutions. The derivation fol­
lows closely that presented by Noyes,4 but is extended 
to take into account both the mean force and the func­
tional Drr{r) discussed above. The physical reasoning 

Journal of the American Chemical Society / 92:8 j April 22, 1970 



2249 

in support of this treatment has been discussed in detail 
elsewhere7,19-21 and will not be reproduced here. 

Three-Dimensional Solution. Consider again the 
solution of two solute species, X and Y, in solvent S. 
Let us assume that the X and Y molecules exert no 
long-range forces on each other, and that initially the 
molecules of each species are distributed randomly 
throughout S in the way they would be if the other 
species were not present. Furthermore, let us assume 
that at some zero time we can "turn on" a diffusion-
controlled reaction X + Y -»• products in the solution. 
We wish then to calculate the rate of the reaction at sub­
sequent times. 

Very soon after the reaction is initiated, most of the 
X molecules that were near Y molecules at / = 0 will 
have reacted so that the concentration of Y molecules 
near a still-unreacted X will, on the average, be some­
what lower than the remaining bulk concentration of Y 
in the solution. This situation is then analogous to the 
existence of a concentration gradient in Y around the 
remaining X molecules. In most systems of chemical 
interest, a steady-state condition is quickly achieved 
such that the next flux $ of Y molecules toward X 
molecules along this gradient is the same at all distances 
away from the centers of the X molecules andis just suffi­
cient to provide for the rate at which the X molecules 
react. If c(r) is the average concentration of Y at a dis­
tance r from the center of an X molecule, the flux of Y 
molecules through a sphere of radius r about an X is 
given by 

$ = 4irr2DTr(r) 
dc(r) c(r)dU(r)' 

dr kx>T dr 
(3) 

where Drr(r) is the radial coefficient for the relative 
diffusion of X and Y molecules, and U(r) is the potential 
of the mean force acting on X-Y pairs in the solution. 
But in steady state, this net flux must be balanced by 
the rate at which Y molecules are depleted from solution 
by reaction 

$ = kc(p) exp(£/(p)/kBT) (4) 

where p is the X-Y distance at which reaction can 
occur, and k is the rate constant that would be ob­
served were an equilibrium distribution of solute 
molecules maintained in the system. 

Combining eq 3 and 4 and solving for the steady-state 
concentration yields 

c(r) exp(-U(r)/kBT)[c(o>)-

kc(P) 
47r(rD)* 

where the quantity (rD)* is given by 

exp(U(p)/kBT)] (5) 

(rD) * - [T exp(U(s)/kBT) ds 
DJ.s)sfl 

(6) 

The microscopic distribution c(r) is not accessible to 
direct experimental measurement. Instead, kinetics 
data are used to determine the macroscopic second-
order rate constant k' based on the bulk concentration 
[Y] of Y 

* = A:'[Y] (7) 

(19) P. Debye, Trans. Electrochem. Soc, 82, 265 (1942). 
(20) F. C. Collins and G. E. Kimball, J. Colloid ScL, 4, 425 (1949). 
(21) F. C. Collins, ibid., 5, 499 (1950). 

To a good approximation, [Y] in eq 7 may be equated 
with c( oo), Comparison of eq 4 and 7 then shows that 

c (») = jpdp) exp(U(p)/kBT) (8) 

Substituting this result into eq 5 with r = p and re­
arranging, we obtain the final expression 

k' = 
1 + (kj^(PD)*) 

(9) 

which differs from the expression obtained by Noyes4 in 
that the quantity (pD)*, defined in eq 6 at r = p, is 
calculated with reference to the mean potential U(r) and 
an /--dependent coefficient Dn(r). 

For reactions of the type, X + X -*• products, the 
right-hand sides of eq 4 and 7 must be multiplied by a 
factor of 2, leading to 

k' = 
1 + (/C/2TT(PD)*) 

(10) 

Two-Dimensional Solution. If we attempt to carry 
out a similar derivation for the rate of reaction in a 
two-dimensional solution, we quickly come upon a 
striking difference between the situations in two and 
three dimensions. For the sake of simplicity, let us 
first assume that £>rr is independent of r, and that any 
interaction U(r) between X and Y molecules can be ig­
nored. Then in two dimensions the steady-state con­
dition is represented by 

kc(p) = 2-KrDx 
dc(r) 

' dr 
(r> P) (H) 

Equation 11 is identical with the expression obtained for 
three dimensions by equating the right-hand sides of eq 
3 and 4, except that the factor 2ivr for the circumference 
of a circle appears in place of Arr2, the surface area 
of a sphere. 

Integration of eq 11 yields the result 

c(r) = c(p)[l + (k/2rD„) In (r/p)] (12) 

which indicates that c( =°) must be infinite if a steady-
state condition is to be maintained. We conclude that 
diffusion in two dimensions does not provide a sufficient 
supply of inflowing Y molecules to sustain a steady-
state concentration gradient. (The same conclusion 
obtains if the mean potential U(r) and variations in 
Drr(r) can be neglected for X-Y distances greater than 
some value R. Equations 11 and 12 are then valid for 
r > R, requiring that c(o°) be infinite for a steady-state 
condition to be achieved.) The concentration c(p)— 
and hence the observed rate of reaction k'—must 
therefore decrease monotonically with increasing time 
until reaction is complete. 

In contrast to eq 8, the time-dependent macroscopic 
rate factor k'(t) for a diffusion-controlled reaction in 
two dimensions is given by 

k'(O = | ^ 4 exp[U(p)/kBT] 
kc(<&) 

(13) 

for times t sufficiently short that the bulk concentration 
of Y (here approximated by c(»)) does not change 
appreciably. Solutions to eq 13 can then be obtained 
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Figure 5. Plot of the time-dependent macroscopic rate constants 
for a diffusion-controlled reaction in two dimensions. The mathe­
matical assumptions leading to each of the four curves are identified 
in the text. 

by numerical integration of the system of equations 

bt rdr\rVnkr)l cV + kBT dr J / ( H a ) 

^ ^ = - kc{p,t) exptU(P)/kBT] (14b) 

from the initial condition 

c(r,Q) = c (» ) exp[- U(r)/kBT] (15) 

where (14a) is the diffusion equation in two dimensions 
and (14b) accounts for the depletion of Y molecules 
due to reaction. 

Results 

Rate factors k' for a diffusion-controlled reaction 
X + Y -*• products in two- and three-dimensional 
solutions were computed for a variety of combinations 
of Drr(r) and U(r). It was assumed that the species X 
and Y distinguish themselves from the solvent only in 
their ability to react with each other; otherwise, the 
potential U(r) and the relative diffusion coefficient 
Drr for an X-Y pair were assumed to be the same as for 
a pair of solvent molecules. The "equilibrium" rate 
constants k were calculated from two- and three-
dimensional kinetic gas theory with the assumption 
that every collision would result in reaction. The 
distance p at which reaction can occur was taken equal 
to the a parameter in the Lennard-Jones pair potential. 

Two-Dimensional Solution. The rate calculations 
for two dimensions were based on the liquid-like state 
of the model fluid shown in Figures 1 and 2 and ex­
amined in detail in ref 12. The value of the self-diffu­
sion coefficient for this state is £>s = 4.39 X 101V2 

sec -1; the potential of the mean force yp(r) is shown in 
Figure 3, and the empirically determined relative 
diffusion coefficient is that shown in Figure 4. 

The time-dependent behavior of k'(t) for four 
different DTr(r)-U(r) combinations is shown in Figure 
5. In order to determine the effect of the interaction 
U(r) on the rate of reaction, k'(t) was calculated with a 

fixed value of Dn = 8.78 X 101V2 sec = 2DS for 
U(r > p) = 0 (curve D), U(r) = \}/(r) (curve B), and 
for [/(/) equal to the Lennard-Jones pair potential 
<Phj(r) (curve A). Curve C was obtained with U(r) 
= \p(r) and Dir(r) as shown in Figure 4. Curve C 
therefore represents the most accurate evaluation of 
k'(t) for a diffusion-controlled reaction in the model 
fluid. 

During the first stage of the reaction, the rate is 
primarily determined by the equilibrium (t < 0) con­
centration of closely associated X-Y pairs provided by 
U(r) according to eq 15. But after a brief induction 
time these initial pairs are depleted from solution by 
reaction, and the rate thereafter is determined by the 
rate at which new encounter pairs are formed through 
diffusion. The Lennard-Jones potential, which pro­
vides both the highest initial concentration of X-Y 
pairs and the least resistance to relative diffusion, 
yields the highest reaction rate (curve A) over the entire 
2 X 10 u sec interval spanned by Figure 5. Com­
parison of curves A and B shows the effect upon the 
reaction rate of the barriers to relative diffusion pro­
vided by the mean potential yp(r), while curve C indi­
cates the additional lowering of the reaction rate that is 
obtained when the "adjusted" coefficient D„(r) is 
included in the calculations. 

Three-Dimensional Solution. Liquid argon at a 
temperature 108.180K and density 1.261 g cm - 3 was 
used as a model for the reaction system in the three-
dimensional rate calculations. The radial distribution 
function g(r) for this state has been measured by 
Smelser,22 and a tabulation of the function was kindly 
provided by that author. The Lennard-Jones potential 
parameters for argon are a = 3.405 A, e/7cB = 119.80 
0K,23 and the self-diffusion coefficient for argon in this 
state is Ds = 4.37 X 10-5 cm2 sec-1.24 From these 
parameters a value k — 3.70 X 1011I. mol - 1 sec -1 is 
obtained for the equilibrium constant. 

The predicted values for k' obtained from eq 6 and 
9 for several combinations of U(r) and Drr(r) are listed 
in Table I. Standard theoretical treatments of chem­
ical reaction kinetics in solution generally neglect any 
mean pair potentials or excluded volume effects that 
might interfere with the relative diffusion of the reactant 
molecules. To determine the effect of including a 
reactant-pair potential in the calculations, k' was com­
puted for U(r > p) = 0, U(r) = \p(r), and U(r) equal to 
the Lennard-Jones potential with Z)n. constant and equal 
to 2DS for all X-Y distances. Comparison of the values 
obtained for U(r) = 0 and U(r) = ip(r) shows that the 
predicted rate of reaction in three dimensions is not 
changed appreciably when a quasi-realistic interaction 
like \p(r) is incorporated into the theory. 

Although the magnitude of short-range cooperative 
correlations in the relative diffusion of molecules in 
real liquids is not known and is not presently accessible 
to direct experimental measurement, some estimate of 
the effect these correlations would have upon the 
kinetics of diffusion-controlled reactions is obtained by 
calculating k' under the assumption that Drr(r) for 

(22) S. Smelser, Ph.D. Thesis, California Institute of Technology, 
Pasadena, Calif., 1969. To be made available through University 
Microfilms. 

(23) J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, "Molecular 
Theory of Gases and Liquids," John Wiley & Sons, Inc., New York, 
N. Y„ 1954, p 165. 

(24) J. Naghizadeh and S. A. Rice, J. Chem. Phys., 36, 2710 (1962). 
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Table I. Calculated Steady-State Rate Constants for a 
Diffusion-Controlled Reaction in Liquid Argon 

(pD)*, k', 
U(r) D„(r) Cm3SeC - ' 1. m o l - 1 sec - 1 

0 2D, 2.12 X 10"'2 1.00 X 10'» 
<Kr) 2D, 2.23 X lO"'2 1.03 X 1010 

Lennard-Jones 2D, 2.67 X 10"» 1.14 X 1010 

0 As shown in 1.50 X 1O - '2 0.79 X 10'» 
<P(r) Figure 4 1.60 X lO"12 0.83 X 10'° 
Lennard-Jones 1.96 X IQr11 0.95 X 10'» 

the three-dimensional solution varies as the ratio 
Drr(r)l2Ds observed in the two-dimensional model 
fluid. The final three entries in Table I show the 
effect of U(r) when the rate constant is calculated with a 
coefficient Drr(r) that decreases for small reactant-pair 
separations as shown in Figure 4. For each of the 
three assumed forms for U(r), the predicted value for 
k' is lowered about 20% when the /--dependent co­
efficient is included in the calculations. 

The small change in k' that is obtained when \p(r) 
is included in the calculations probably reflects the 
partial cancellation of two opposing effects. As in two 
dimensions, the barriers to relative diffusion presented 
by an oscillatory potential like \p(r) would tend to 
decrease the rate of reaction. Yet any potential having 
an attractive component extending beyond r = p 
would tend to increase the minimum distance within 
which a pair of molecules would have to approach 
each other before reaction becomes probable, and 
hence would tend to increase the reaction rate. This 
latter effect is illustrated by the relatively large increase 
in k' that is obtained when U(r) is set equal to the 
Lennard-Jones pair potential and either form of DIr(r) 
is assumed. A similar effect is also observed in two 
dimensions, as may be seen by comparing curves A 
and D in Figure 5. 

The substantial decrease in the predicted value for 
k' that is obtained when an /--dependent relative 
diffusion coefficient is incorporated into the calculations 
may—within the framework of the Smoluchowski 
model for diffusion-controlled reactions in solution— 
be attributed to the fact that a functional form for 
Z>rrO) like that shown in Figure 4 tends to slow the 
relative diffusion of a pair of reactant molecules just in 
the region where the gradient in c(r) is greatest. A 
more thorough analysis of this phenomenon would 
require an investigation of the steady-state concen­
tration distributions that are established when various 
combinations of U(r) and DTT(r) are assumed. 

Discussion 

In light of the results presented here and in two 
previous papers / 1 1 2 we may draw several conclusions 
regarding the mechanical influence of the solvent upon 
the microscopic kinetics of simple chemical reactions in 
solution. Data obtained from the computer simulation 
of a model dense fluid of Lennard-Jones disks has 
shown that diffusion in simple liquids may proceed by a 
mechanism that is, at the molecular level, largely 
cooperative in nature; and further, that this cooperative 
mechanism tends to retard the relative diffusion of 
molecules separated by short distances in the liquid. 

For solutions in which the solute and solvent mole­
cules are physically similar, the average force acting 

between a pair of solute molecules may be approxi­
mated by the mean potential \p(r) obtained from the 
experimentally accessible26 radial distribution function 
g(r) for the solvent. Our calculations have shown 
however that this time-averaged mean potential does 
not provide a complete description of the transient 
"excluded volume" effects that apparently play an 
important role in relative diffusion phenomena at 
liquid-like densities. A more accurate description of 
relative diffusion in the two-dimensional model fluid 
was obtained from a theoretical treatment that included 
both \p(r) and /--dependent relative diffusion coefficients. 
Unfortunately it is difficult to estimate, on the basis of 
the two-dimensional simulation data alone, the relative 
importance of short-range cooperative correlations in 
the mechanism for diffusion in real, three-dimensional 
liquids. The presence of an additional degree of 
freedom would be expected to decrease the dynamic 
importance of excluded volume effects; yet the relative 
diffusion of two molecules in a three-dimensional 
liquid must involve interactions with a much larger 
number of neighboring solvent molecules. Although 
direct experimental observation of relative diffusion 
phenomena in real liquids is not at present possible, 
analyses similar to those described in ref 12 of existing 
simulation data for three-dimensional model fluid26,27 

should yield some insight into the problem. 

The results presented in this paper indicate that the 
decrease in the coefficient describing the relative dif­
fusion of reactant-pairs separated by short distances is 
an important factor in determining the steady-state 
rate for a diffusion-controlled reaction in real systems. 
The mean potential \p(r) can nonetheless serve as a 
convenient intuitive device for interpreting a number of 
chemically important processes occurring in solution. 
In our investigation of diffusion in the simulated 
fluid,12 we observed that pairs of particles diffusing 
away from each other tended to become "trapped" 
momentarily in first, second, and third nearest-neighbor 
positions. This phenomenon is reminiscent of the 
so-called "solvent cage effect," and can to a first 
approximation be ascribed to the successive potential 
barriers to relative diffusion presented by \(/(r). 

Photodissociation of a molecular solute is another 
process that "samples" the microscopic structure and 
dynamics of the solvent in local regions of a solution. 
Noyes and Meadows9 have investigated the wave­
length dependence of the quantum yield for photo-
dissociation of molecular iodine in a number of non-
reactive solvents and determined10 that the experimental 
results are not reproduced by a theoretical model that 
neglects the microscopic structure of the solvent sur­
rounding the reaction site. For longer wavelengths— 
such that the excess energy over that required to break 
the iodine-iodine bond is small—the simple "solvent 
continuum" theory is found to predict quantum yields 
larger than those observed experimentally; yet for 
progressively shorter wavelengths the observed quan­
tum yield is found to increase more rapidly than pre­
dicted by the theory. 

(25) See, for example, ref 18 or H. H. Paalman and C. J. Pings, 
Rev. Mod. Phys., 35, 389 (1963). 

(26) A. Rahman, Phys. Rev., 136, A405 (1964); / . Chem. Phys., 45, 
2585 (1966). 

(27) L. Verlet, Phys. Rev., 159, 98 (1967). 
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On the basis of the model for relative diffusion 
phenomena presented in this paper, the experimental 
quantum yield data can be interpreted in terms of 
transient processes dependent upon the iodine-solvent 
interaction described by \{/(r) and longer lived pro­
cesses dependent upon -Dn-O

-)- Immediately after 
dissociation, the separating iodine atoms encounter the 
barrier in i^(r) between first and second nearest-neighbor 
positions. If the excess energy provided by the ex­
citing photon is small, the atoms are reflected from the 
barrier and recombine quickly; but if the excess energy 
is sufficient to permit the separating atoms to reach 
second nearest-neighbor positions, the barrier will 
tend to keep them apart and thus prevent recombina­
tion. Furthermore, if D„(r) increases with increasing 
r, pairs of atoms that initially achieve a large separation 
will diffuse away from each other more quickly, and 
thus be even less likely to recombine. In reality of 

Since they were first identified in 1944,2 interest in 
triplet state molecules has grown, and this growth 

has been particularly rapid during the last few years. 
Of the many types of molecules which have been 
studied considerable attention has been given to organic 
ketones and aldehydes.3-10 Surprisingly enough most 

(1) (a) Riverside; (b) to whom correspondence should be addressed 
at Riverside; (c) Irvine. 

(2) (a) G. Lewis and M. Kasha, J. Amer. Chem. Soc, 66, 2100 
(1944); (b) A. Terenin, Acta Physicochim. URSS, 18, 210 (1943); Zh. 
Fiz. Khim., 18, 1 (1944). 

(3) R. Shimada and L. Goodman, / . Chem. Phys., 43, 2027 (1965). 
(4) J. M. Hollas, E. Gegorek, and L. Goodman, ibid., 49, 1745 (1968). 
(5) Y. Kanda, H. Kasada, and T. Matamura, Spectrochim. Acta, 20, 

1387 (1964). 
(6) D. R. Kearns and W. A. Case, / . Amer. Chem. Soc, 88, 5087 

(1966). 
(7) S. Dym, R. M. Hochstrasser, and M. Schafer J. Chem. Phys., 48, 

646 (1968). 
(8) E. Eastwood and C. P. Snow, Proc. Roy. Soc, Ser. A, 149, 434 

(1935). 
(9) J. M. Hollas, Spectrochim. Acta, 19, 1425 (1963). 

course, the successive maxima in \p(r) and the /--depen­
dence of Dtr(r) are the result of interactions between the 
solute iodine atoms and surrounding solvent molecules, 
and are truly descriptive only of an equilibrium situa­
tion. Monchick28 has however presented a theoretical 
treatment of photodissociation processes that includes 
an "effective" potential much like \p(r), although no 
theory incorporating both \f/(f) and an r-dependent 
relative diffusion coefficient has previously been 
treated. 
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of these studies have been concerned with aromatic 
carbonyl compounds and there have been relatively 
few studies of "simple" carbonyl-containing molecules 
such as enones and dienones.8-10 Because of this, and 
because of the current interest in their photochemical 
properties, we have started a comprehensive investiga­
tion of the spectroscopic properties of a wide variety of 
enones and dienones. Some of our earlier studies of 
enones have already been published,11,12 and more 
detailed results will be forthcoming.13 In the present 
paper we discuss results obtained with the following 
three cross-conjugated dienones: a-santonin (I), 6-epi-

(10) G. Herzberg, "Electronic Spectra and Structure of Polyatomic 
Molecules," D. Van Nostrand Co., Inc., Toronto, 1966. 

(11) D. R. Kearns, G. Marsh, and K. Schaffner, / . Chem. Phys., 49, 
3316(1968). 

(12) G. Marsh, D. R. Kearns, and K. Schaffner, HeIv. Chim. Acta, 51, 
1890 (1968). 

(13) G. Marsh, Ph.D. Thesis, University of California, Riverside, 
CaI., 1969. 
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Abstract: The singlet -* singlet and singlet -*• triplet transitions in a-santonin (I), 6-episantonin (II), and 2-
bromosantonin (HI) have been investigated at both 77 and 4.2°K. The results may be summarized as follows, (i) 
Polarization measurements demonstrate that vibronic coupling between the S(n,7r) and S(7r,ir) states is the principal 
source of intensity for the S0 -*• S(n,7r) transition. The magnitude of the electronically allowed contribution to 
the intensity appears to depend upon the molecular structure, (ii) The lowest excited triplet state in each case is 
identified as a 3(TT,7T) state, (iii) The 3(n,7r) state has been observed in each compound just above (1200-1600 
cm-1) the 3(7r,7r) state. The intensity in the S0 -* T(n,7r) transition of a-santonin (ema* — 0.3) is attributed to strong 
spin-orbit coupling with the ^ , i r ) state, (iv) DifFuseness observed in the S0 -*• T(n,ir) absorption spectra at 4.2 0K 
is attributed to vibronic interaction between the 3(n,7r) state and nearly degenerate vibronic levels of the lower lying 
Z(T,TT) state. These spectroscopic observations appear to have an important bearing on the interpretation of the a-
santonin photochemistry and the possible role of the 3(n,7r) and 3(7r,7r) states in the excited state transformations. 
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